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ABSTRACT j , ' , c

This paper is concerned with waves in a composite elastic bar, -...........
the left half of which is composed of a linearly elastic material,
while the nonlinearly elastic material of the right half can Zt trtos.
undergo a phase transition. We assume that a wave in the left
portion of the bar is incident upon the interface between the two .
materials, and we investigate the question of whether the phase I
transition can be exploited to augment or diminish the strength D.s-b

of the reflected or transmitted wave.

I 
___ ___

1. Introduction. We consider a composite tensile specimen consisting of two dissimilar

elastic bars joined end-to-end. One of the two elastic materials ("material 2") is capable of

undergoing a stress-induced transition to a second phase, while the other ("material 1") is not. 4

When an incident wave traveling in the single-phase material strikes the bimaterial interface, it

may nucleate a phase transition in material 2. The reflection and transmission characteristics of

the product phase in such a transition will in general differ from those of the parent phase. We

designate as "material 3" the single-phase elastic material whose properties are identical with

those of the parent phase of material 2. Our interest lies in comparing the strengths, relative to

the incident wave, of the reflected and transmitted waves generated in the material 1/material 2

composite bar with the relative strengths of those that would occur in a bar composed of material

I and material 3. In particular, we investigate the extent to which the phase-transforming capa-

bility of material 2 can be exploited to control the strength of the reflected or transmitted wave.
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The composite bar is viewed as consisting of two perfectly bonded, semi-infinite

one-dimensional elastic continua. Material I is taken to be linearly elastic, while material 2 is

treated on the basis of a nonlinear continuum model of the kind currently receiving much

attention in discussions of the macroscopic aspects of phase transformations of martensitic type;

see, for example the references cited in [1]. This model is based on a "two-well" potential

energy for material 2, and it includes a nucleation criterion and a kinetic relation governing the

initiation and evolution, respectively, of the phase transition. Thermal effects are neglected here,

so that the model is a purely mechanical one. It has been applied to quasi-static phase transform-

ations in [2], where it was shown to lead to results in qualitative agreement with some experi-

mental observations on materials of the shape-memory type. The dynamics of the model have

been studied in [3].

There are many recent papers devoted to the general issue of the continuum-mechanical

modeling of the macroscopic effects of phase transformations; examples may be found in the

references cited in [1]. The only work of which we are aware that is related to the specific

problem under discussion here is that of Pence [4, 5]. In [4], Pence studies the reflection and

transmission of an acoustic shear wave from an initially stationary phase boundary in an elastic

solid. The analysis in [5] is concerned with the structure of the fields in two elastic bars, one of

which (the impactor) is composed of a single-phase material, while the other (the target) is made

of a material capable of sustaining a phase transformation. Neither of these papers addresses the

issues of primary interest here.

We describe the basic model to be used in the following section. Section 3 contains the

formulation of the underlying wave propagation problem, and Section 4 is devoted to its

solution. In Section 5, we show that the ratio of the relative strength of the reflected wave in the

presence of the phase transition to its relative strength in the absence of the transition is governed

by two material parameters: one is the ratio of the mechanical impedances of material I and the
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parent phase of material 2, while the other parameter is inherently related to the phase-transition

properties of material 2. In terms of these two parameters, we derive in Section 5 conditions

under which (i) the reflectivity is always increased by the phase transition, independently of the

kinetic relation and the nucleation criterion, (ii) the reflectivity is always decreased, and (iii) the

effect of the transition on reflectivity depends on the details of kinetics and nucleation. Some

analogous results for the transmitted wave are stated without proof in Section 6.

2. The model. In a reference configuration, the composite bar occupies the entire x-axis,

with material 1 in x < 0, material 2 in x > 0; the referential cross-sectional area is A. We treat

longitudinal motions in which a particle at x in the reference state is carried to the point

x + u(x, t) at time t. The displacement u is to be continuous with piecewise continuous first and

second derivatives. The strain and particle velocity are defined by 7(x, t) = u(x, t) and

v(x, t) = ut(x, t) , respectively, where the derivatives exist; in order to assure that the mapping

x -> x + u is one-to-one, we require that -y> -1 everywhere. At points in the x,t-plane where the

fields are smooth, balance of linear momentum in the absence of body force requires that

x =p(x) vt, (2.1)

where a(x, t) is the stress in the bar, and

P ' x<0,
P(x) P2 (2.2)

p92 , x >0;

the constants p1 and P2 are the mass densities of materials 1 and 2 in the reference state,

respectively. From the definitions of y and v, one also has
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vx - Tt = 0 (2.3)

where the fields are smooth.

The stress-strain relation for the composite material l/material 2 bar is

A aI(y), x<O, y>-l,
(Y = a(T) x) --- (2.4)

{A(), x>O, y >-1,

A A
where a, and a2 are the respective stress response functions of materials 1 and 2. For material

1, we assume that

Ca()= gly, -l<Y<oo, (2.5)

where g, is Young's modulus. The stress response function for material 2 is taken to have the

following "trilinear" form:

92T , -1<T<TM,

0 M2(y)= M  (aM - am)(y- M)/(m -MM), M Y y m, (2.6)

S2(Y-T0)) T>Tm .

A

The graph of a2(y) is shown schematically in Figure 1; the significance of the constants t2 ' YO,

yM, Ty, YM and (y may be read from the graph. Each of the three branches of the stress-strain

curve in the figure is identified with a phase of material 2: the two rising branches are the

low-strain and high-strain phases, and the declining branch is the unstable phase. For simplicity,

we have assumed that the Young's modulus g2 is the same in both the low-strain and high-strain
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phases of material 2, but this is by no means necessary. The transformation strain -0 is the

distance between the low-strain and high-strain branches of the stress-strain curve at any given

value of stress; because c M > am, one has yo > ym -ym" If y0 <Ym , the stress am at the local

minimum is positive, as in the figure. If yo > Ym, this minimum stress is non-positive, and the

right half of the bar possesses more than one unstressed configuration. The stress a0 shown in

Figure 1 is such that the shaded areas are equal; a0 is called the Maxwell stress. It is given by

1 2
Sm) = - ( YM +m- Y0); (2.7)

for simplicity, we assume that a0 > 0.

Equations (2.1)-(2.6) yield a system of two differential equations for Y and v for x < 0

corresponding to material 1, and a second pair of differential equations for y and v in the interval

x > 0 for the part of the bar made of material 2.

Suppose that there is a discontinuity in strain or particle velocity along the curve x = s(t)

in the x,t-plane. Balance of linear momentum and the assumed smoothness of the motion require

that the following jump conditions hold:

[[al] S - s [[pv]J, (2.8)

s []] =- [[v]], (2.9)

where for any g(x, t), we write f[g]] = [[g(x,t)]] g(s(t)+, t) - g(s(t)-, t).

The strain energy per unit reference volume for the composite bar is
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W(x x) = (2.10)
w2(y/), x>O, Y>-1,

where the separate energy densities for materials 1 and 2 are given by

Wk(y)f- ck(-') dy' y> -1, k = 1,2. (2.11)

The potential energies for the two materials are defined by Gk(y, a) = Wk(y) - ory. For every

fixed a, GI (y, a) as a function of y has a single minimum at y = alpg. In contrast, the potential G2

for material 2 is such that, at a fixed value of a between YM and GM, G2(, c) has two local

minima separated by a local maximum. When a is outside this range, G2(., a) has only one

minimum. Thus when the stress is such that material 2 can exist in either the low- or the

high-strain phase, G2 is a "two-well" potential typical of two-phase materials.

Suppose that in a piece of the bar corresponding to x1 < x < x2 , the strain and particle

velocity are discontinuous at x = s(t) but are otherwise smooth. Writing

f x2 1WYx t)2x
E(t) = [W(Yx, t), x) + p(x) v (x, t)] A dx (2.12)

x1

for the total energy in this portion of the bar at time t, one can show by a direct calculation that

a(x 2, t)Av(x 2,t) - G(x 1, t)Av(x1, t) - E(t) = f(t)A s(t), (2.13)

where
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f(t) = [[W(y(x,t), x)]] - <a(x,t)> [[y(x, t)], (2.14)

and <a(x, t)> = (1/2){(s(t)+,t) + o(s(t)-,t)}. We call f(t) the driving traction acting on the

discontinuity at x = s(t). In view of (2.13), one may think of f(t)A s(t) as the instantaneous

dissipation rate associated with the discontinuity; if either f(t) = 0 or the discontinuity is

stationary (in the Lagrangian sense) so that s(t) = 0, this dissipation rate vanishes. At any

discontinuity, it is required that the dissipation rate be non-negative:

f(t) s(t) > 0. (2.15)

One can show that, if the motion of the bar is viewed as occurring isothermally, (2.15) is a

consequence of the second law of thermodynamics; we shall therefore refer to (2.15) as the

entropy inequality.

In the problem to be treated here, we shall be concerned with three different types of

strain discontinuity. The first of these occurs at the bimaterial interface at x = 0; because this

discontinuity is stationary, (2.15) is trivially satisfied. The second type of strain discontinuity to

be encountered involves a strain jump either in material 1 or between strains ' s(t)±,t), both of

which belong to the same phase in material 2. Such a discontinuity is a sound wave. Because

the stress-strain relation is linear between the strains 'y(s(t)-, t) and y(s(t)+, t) in either of these

circumstances, the definition (2.14) yields f(t) = 0, so that (2.15) is automatically satisfied at a

sound wave as well. Finally, we shall need to deal with strain jumps in material 2 for which

'y(s(t)-, t) is in the high-strain phase while y(s(t)+, t) is in the low-strain phase. Such a

discontinuity is an example of a phase boundary; for the problem to be considered here, phase

boundaries in material 2 will always move to the right, so that s(t) > 0. It then follows from

(2.15) that f(t) must be non-negative at the phase boundaries arising in the present problem.

Moreover, it is easy to show with the help of (2.14), (2.10), (2.11) for k=2, (2.6) and (2.7) that, at
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any phase boundary with high strain on the left, low strain on the right, the driving traction is

given by

2

As in the analyses in [2,3], a kinetic relation is to be prescribed at a phase boundary; we

take it to have the form of a relation between driving traction f and phase boundary velocity S:

f(t) = (P(s(t)), (2.17)

where (p is a function determined by material 2. It is assumed that (p(s) is a continuous function

that increases monotonically with s. The entropy inequality (2.15) imposes the restriction

(p(s) s _> 0 (2.18)

on the kinetic response function ,p; this and the continuity of (p imply in particular that €p(O)--O.

Again following the arguments in [2, 3], we impose a nucleation criterion for the

initiation of a phase transformation from the low-strain phase to the high-strain phase in material

2: such a transformation takes place through the emergence at x = 0 of a phase boundary

whenever the associated driving traction f would be at least as great as a given critical value f.

that is also determined by the nature of material 2. After entering the bar, the phase boundary

moves to the right in accordance with the kinetic relation (2.17). We assume that the critical

value of driving traction satisfies

0< f, _10 (CMrM-) (2.19)
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The lower bound in (2.19) is a necessary consequence of the entropy inequality (2.15); the right

inequality guarantees that material 2 will support slowly propagating phase boundaries as well as

the fast ones permitted here; see the discussion of quasi-static phase transitions in [1-3].

Imposing the upper bound on f. in (2.19) also simplifies the details of nucleation in the problem

to be treated here, so we adopt it even though it is not strictly necessary to do so.

Wave propagation properties of the material 1/material 2 bar modeled above are

ultimately to be compared with corresponding properties of a material 1/material 3 bar, in which

material 3 is a linearly elastic material whose density and Young's modulus coincide with their

counterparts in the low-strain phase of material 2: P3 = P2 9't3 = g.2. Thus to treat the material 1/

material 3 bar, one must modify the basic field equations (2.1)-(2.6) and jump conditions (2.8),
A A

(2.9) only to the extent of replacing a 2(y) by o 3(y') in (2.4), and thereupon replacing (2.6) by

A

C3(y)= . 2 7, <y<-. (2.20)

Equations (2.10)-(2.15) pertaining to the energetics of the bar remain valid but trivial, since for

discontinuities in either material 1 or material 3, (2.14) always yields f = 0 in place of (2.16).

Since phase transitions cannot occur in either material I or material 3, the kinetic relation

relation (2.17), the attendant restriction (2.18) and the nucleation criterion all become irrelevant

and are discarded.

3. The wave propagation problem. We now formulate the wave propagation problem

to be considered. We suppose that, at time t = - oo, an incident wave bearing a given tensile

strain y, > 0 and a given particle velocity v, is initiated at x = - o in material 1, traveling to the

right and striking the bimaterial interface x = 0 at time t = 0-. At t = 0+, a sound wave will be
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reflected from the interface back into material 1, and a second sound wave will be transmitted

into the right half of the bar, which heretofore was at rest and unstrained, and therefore in the

low-strain phase of material 2. If the incident wave fails to be strong enough to nucleate a phase

transition in material 2, only these two sound waves will be generated. On the other hand, if

nucleation does occur, there will also be a phase boundary that emerges from the interface x = 0

and travels to the right, leaving the particles of material 2 that are behind it in the high-strain

phase.

Thus we are given an incident wave of the form

7I' Xc<CIt, v1  X<Clt'

(x, t) = v(x, t) = for t < 0, (3.1)
S0, x > cIt , 10, x > cIt,

where , and v, are given constants, and c1 is the sound speed in material 1. Observe that,

because y and v are piecewise constant, the field equations (2.1) - (2.5) are trivially satisfied

away from x = cIt for t < 0. When one applies the jump conditions (2.8), (2.9), specialized

appropriately for material 1, to the discontinuity at x = cIt for t < 0, one finds that

c1 = (ptl/pl)1/2, vI = - clyAI , (3.2)

thus determining the sound speed in material 1 and imposing a restriction on the strain and

particle velocity in the incident wave.

Given the incident wave. and assuming first that nucleation does occur, we seek functions

y(x, t) and v(x, t) of the following form on the upper half of the x, t-plane (see Figure 2):
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7I, x < - Clt vI  x < - cIt,

YR -Clt<x<0' VR' -cIt<x<O
Y(x, t) = 'T' 0 < x < St, v(x, t) = VT' 0O< x < st , for t > 0. (3.3)

0T, St<x<c 2t, T st <x<C2,
2~t

0, c t < x < 00, 0, c 2t < x <oo

+ +

here the two constants yR, VR associated with the reflected wave and the four constants YT' VT of

the transmitted wave are to be determined, as are the respective constant speeds s and c2 of the

phase boundary and the sound wave in the low-strain phase of material 2. It is assumed in (3.3)

that s is less than c2, so that the phase boundary moves subsonically in material 2; one can show

that this is in fact necessary.

Since y and v of (3.3) are piecewise constant, the field equations (2.1)-(2.6) are trivially

satisfied away from discontinuities. We shall speak of the problem of determining the unknown

constants in (3.3) from the jump conditions (2.8), (2.9) and the entropy inequality (2.15) at the

two sound waves, the bimaterial interface and the phase bound ry as the wave propagation

problem. We shall find that this problem has a 1-parameter family of solutions, parameter s; s is

then determined by enforcing the kinetic relation at the phase boundary x = st.

If the incident wave fails to nucleate a phase transition in material 2, the appropriate form

for the solution corresponding to the incident wave (3.1) is that obtained by deleting from (3.3)

the wedge 0 < x < st associated with the transformed material:

Y -o< x< -c 1 t, vi I - 0 x<- c

"YR' -cIt<x<0, VR' -cIt<x< 0,
yx ) (x, t) = for t > 0. (3.4)j 7T, 0 < x < c2t, V(Xt) T 0 < x < c2 t,

0, c2t<x <oo, 0, c2t<x<-,

2 Ct'-11-



The form (3.4) is also appropriate for the composite bar composed of materials 1 and 3.

Formally, one can infer properties of the solution whose form is (3.4) from that of the form (3.3)

by setting s = 0 prior to enforcing the kinetic relation, thus avoiding the need to consider (3.4)

separately from (3.3).

4. Determination of y and v.

Case 1. Nucleation occurs. We first assume that the incident wave causes a phase

transition to occur in material 2, and we construct the corresponding reflected and transmitted

waves.

When one imposes the jump conditions (2.8), (2.9) at the reflected sound wave x = - clt

in material 1, at the bimaterial interface x = 0, at the phase boundary x = st and at the transmitted

sound wave x = c2 t in material 2, one obtains a system of eight algebraic equations for the eight
+ +

quantities yR' Y'VT' c2 and s. Of these equations, the two arising from the reflected sound

wave are not independent because of (3.2) 1, and the two arising from the transmitted sound wave

determine c2 as

c2 = (42/p) 1 2 , (4.1)

and then reduce to a redundant pair. This leaves six independent equations for the seven
+ +

unknowns YR' V R' T' VT and s. These equations are readily solved for the y's and v's in terms

of s, furnishing

2 1 s
(4.2)YtR = -1"' I - O( +1C 2 + S '0' 42

-12 2
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2a13 s + (1 + P)c 2T X2+= )--7 (43)

2(1 + (2 + s)T = + p 'I-(I + P3)(C2 - S2 )Y]o (4.4)

2

V R = 'T + p C171 - jp IO (4.5)

+ 213 (O 2 
+ s)s

VT  - C1 Y I - P 2 *2 (4.6)1 + 13 (1 + 3)(c 2 -s )

where we have introduced the symbols

x = Cl/C 2 , 13 = Plcl/P2c2 , (4.7)

for the respective ratios of the sound speeds and the mechanical impedances of materials I and 2,

and we have also eliminated the particle velocity vI of the incident wave from the results by

using (3.2)2.

The representations (4.2)-(4.6) for the strains and particle velocities involve the as yet

unknown value of the phase boundary speed s, which will ultimately be determined by the

kinetic relation.

To assure that ' and + are respectively in the high- and low-strain phases of material 2,

we must necessarily enforce the phase segregation inequalities +T m' T .M By (4.3) and

(4.4), these inequalities are equivalent to

+ (1+13)c2 +S
yi>Gm(s)- yn--- 0 <s<c (4.8)

2a13 2 +13 s 2
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+1 1 (C3c2+ S)
YI < GM(S) 7 M 2ap 2 2 0' 0 < s < c2 . (4.9)

The functions GM and Gm defined in (4.8), (4.9) are both monotonically increasing with s;

moreover, GM(0) > 0, and GM(s) tends to +oo as s tends to c2, while Gm(c 2) is finite. The

inequalities in (4.8), (4.9) are restrictions on the datum yi and the phase boundary speed s. These

restrictions are illustrated in the s, yi-plane of Figure 3, where the curves Fm" yI = Gm() and

I'M: y1 = GM(s) are shown schematically; in the figure, it has been assumed for definiteness that

Gn(0) > 0 (or equivalently am > 0), though this need not be the case. Only the pairs (s, yI) that

correspond to points on or between these two curves are permitted by the phase segregation

requirement.

To find the driving traction f at the phase boundary, one substitutes for 7T and YT from

(4.3), (4.4) into (2.16); the result is

f { 4oc [(1 + P)c2 - 2k 2s -2s2 } (4.10)

2.270 1+ 21+ 2 70-M .1

The curve F0 in the s, y1-plane along which f = 0 is therefore given by

" = lO~s) [Gm(S) + GM(S)]; (4.11)

we call r 0 the Maxwell curve. For 0 < s < c2, the right side of (4.11) is a monotonically

increasing function of s that tends to +o as s tends to c2. Also, from (4.11), (4.8), (4.9), (2.6) and

the assumption that the Maxwell stress a0 is positive, one has
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1+13, 1+[3a
G0(0) 1+ (T'M > 02 . (4.12)

The curve FO is also shown schematically in Figure 3. The requirement f _ 0, imposed by the

entropy inequality (2.15), holds only for points (s, y I) in the closed curvilinear strip between F0

and FM.

Finally, we must assure that y(x, t) > -1 everywhere in the x,t-plane. One can show that,

if (s,yi) lies in the strip between F0 and FM, the strains yR and Y-T defined in (4.2), (4.3)

automatically fulfill this requirement. On the other hand, it turns out that + > -1 if and only if

(s, yI) lies above the curve F 1 defined by

F 1 G 1 ()-~ + - (4.13)- 2ap 2c4p c2 -_2  40 ' 0<s<c 2 .

From (4.13) and (4.9), it can be seen that FM always lies above F1 I. After some algebra, one

shows that F1 intersects F0 exactly once; the intersection occurs at a value s = s, given by

= o+ m 1+/2C2 < c 2
"  (4.14)

For values of s to the left of s*, F1 lies below r0 , while for s, < s < c2, the reverse is true.

Let S stand for the closed curvilinear strip bounded above by FM and below in part by F0

and in part by r-l; S is shown hatched in Figure 3. It then follows thatfor each value of the
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incident strain 7, that lies in the interval (G0(O), +0,), there is a 1-parameter family (parameter s)

of admissible fields y(x, t), v(x, t) of the form (4.2)-(4.6) that fulfill all of the conditions of the

wave propagation problem. For each given 'y in this interval, the permissible range of the

parameter s is that corresponding to the end-points of the associated horizontal line segment in

the s, y-plane connecting either FM or the vertical axis on the left to either F 0 or F_ 1 on the right,

as appropriate. Each of these fields that corresponds to a positive value of s involves a phase

transition. For each value of yI outside (G0(O), +,o), there is no solution to the wave propagation

problem that involves a phase transition; as we shall see in Case 2 below, the only solution

available for such an initial datum yI is one in which no phase transition occurs.

Case 2. Nucleation does not occur. In this case, we can find the solutions of the form

(3.4) arising from the incident wave (3.1) by formally setting s = 0 in the expressions (4.2)-(4.6).

This yields

21- YI' -Clt<X<0,
T~xt) =v~xt) = 2ctl3
2[ -) 1+0 +-"-- c2 TI ' - cl t < x < c2t, t > 0, (4.15)

I+ Y1 ' O<x<c 2t,

for the reflected and transmitted waves in the absence of the phase transformation. Since the

solution (4.15) involves only sound waves, the entropy inequality (2.15) holds automatically.

The phase segregation requirement demands that y(x, t) < y for 0 < x < c2 t; from (4.15) and

(4.9), this leads to

Yi < GM(0). (4.16)

For each positive initial datum y, satisfying (4.16), the fields (4.15) comprise a solution of the
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wave propagation problem that is uniquely determined by the data and in which no phase

transition takes place. Since the incident strain yI has been assumed positive (tensile) throughout,

the requirement v,(x, t) > -1 is automatically satisfied by the strain field of (4.15)I.

It is important to note that (4.15) also represents the solution to the wave propagation

problem in which the left half of the bar is composed of material 1, while the right half is made

of material 3. In this case, however, (4.15) represents a solution for all tensile values of the

initial datum y,, and not merely for those satisfying (4.16).

Combining the conclusions reached in Cases 1 and 2 establishes the following results.

(i) For each value of the initial datum yi in the interval (0, G0 (0)), there is exactly one solution to

the wave propagation problem; it is given by (4.15) and does not involve a phase transition. (ii)

For each y, in (G0(0), GM(0)], there is a 1-parameter family of solutions (4.2)-(4.6) to the wave

propagation problem that involve a phase transition, and a single solution (4.15) that does not.

(iii) For values of y, > GM(O), there is only the 1-parameter family of soutions (4.2)-(4.6), each

of which involves a phase transition.

The ambiguity remaining when yl is in (G0(0), GM(O)I (case (ii) above) is resolved by

first invoking the nucleation criterion, then the kinetic relation. Setting f in (4.10) equal to the

nucleation value f, defines a curve F,: y, = G,(s) in the s, yi-plane; we omit the formula for G,

and we do not show F, in Figure 3. The constitutive inequality (2.19) can be shown to guarantee

that F, always lies in the between F0 and FM, and that G0(0) < G*(0) < GM(0). We assume

further that f, is such that F, lies in the slightly smaller strip S in Figure 3. At points on or

between F, and FM, (4.10) yields values of f at least as great as f,. It then follows that

nucleation will occur if the incident strain y, is at least as great as the critical value ', given by
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G*(0) 2 .t2 0 (Y 0 +  (4.17)

(*'A

When the incident wave carries a strain y, that is less than y1 , no phase transition occurs, and the

appropriate solution to the wave propagation problem is that given by (4.15). On the other hand,

if y, is at least as great as y, nucleation will take place in material 2, a phase boundary will

emerge at x = 0, and the appropriate solution must be selected from the 1-parameter family of

admissible fields (4.2)-(4.6) involving a phase transition. The kinetic relation (2.17) provides the

mechanism for this selection. Substituting for f from (4.10) into (2.17) yields the equation for s:

1 1+13 •

yI=Gk(s)-G(s)+ 92-y0 2-p p (s) '  Y> ], (4.18)

where y is the kinetic response function of the material. Because (p(s) and G0(s) both increase

monotonically with s, the same is true of the right side of (4.18). Since p(0) = 0, one has

Gk(O) = G0(0); moreover, Gk(s) tends to +oo as s tends to c2, and 0 < G0 (s) < Gk(s) < GM(S) for

0 < s < c2 .Thus the curve Fk in the s, yi-plane represented by (4.18) lies between r-0 and FM .

We further assume that qp is such that Fk lies in the strip S (see Figure 3). Clearly (4.18)

determines exactly one value of s for each given y1 in (G0 (0), +oo). When inserted into

(4.2)-(4.6), this value of s completes the determination of the response to the incident wave when

a phase transition is nucleated.

5. Reflectivity. For a given incident wave in material 1, we wish to compare the

strengths of the reflected waves when (i) the right half of the bar consists of material 2, and (ii)

the right half is composed of material 3. To motivate our notion of the strength of the

transmitted or reflected wave, it is helpful to reconsider the energetics of the composite bar.

Consider first the case of the material I/material 2 bar. By extending the energy considerations
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of Section 2 to a portion of the bar long enough to include the four discontinuities at x = - Cit,

x = 0, x = st and x = c2t, one can establish the following identity among energy rates for fields of

the form (3.3):

eI = eR + eT + fAs, (5.1)

where

e { c v}p Ic I A. (5.2)

e R c (YR TIY) + I(vv2}pcA, (5.3)

2W2(y) 1 . N I

+ 2 +C2YT 2  }2( c2 s)A, (5.4)

f is the driving traction at the phase boundary, A is the cross-sectional area of the bar and s is the
+ +

phase boundary speed. In (5.3), (5.4), yR' YT' VR and vT are given in terms of s by (4.2)-(4.6),

and W2 (YT) refers to the stored energy density W2 of material 2. We call eI, eR and eT the

incident, reflected and transmitted energy rates; note that all have the units of energy per unit

time, and all are non-negative. By (2.15), the dissipation rate fAs is non-negative as well. Thus

neither eR nor eT is greater than eI .

Setting s = 0 in (5.1)-(5.4) provides the corresponding identity among energy rates for the

material I/material 3 bar in which no phase transformation can occur.

The reflectivity and transmissivity are defined by
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eR  eT
q R = e < 1, qT = eT < 1 (5.5)

eI  eI

respectively; they are measures of the strengths of the reflected and transmitted waves relative to

the incident wave. We are interested in

qR qT
QR(S, _) = q R QT(S, I) = q T (5.6)

qRIS_- qTis=0

which are the ratios of reflectivity and transmissivitiy in the material 1/material 2 bar to their

respective counterparts in the material I/material 3 composite. We study QR in the present

section, QT in the next. When 3 = 1, the reflectivity qRIs=0 of the material I/material 3 bar

vanishes, and (5.6) 1 fails to define QR; we exclude this possibility for simplicity by assuming

that * 1.

The reflectivity ratio Q is a function on the admissible strip S shown hatched in Figure

3. For a given kinetic relation, only the values of QR at points on the associated kinetic curve Fk

are relevant; for a given value of the strain y, in the incident wave, only the value of QR at the

point on rk whose ordinate is Yi is relevant. If, for example, one has QR(s, y1) < 1 at this point,

then the reflectivity of the material I/material 2 bar is less than that of the material I/material 3

bar, so that reflection has been diminished by the occurrence of the phase transition. We study

the properties of QR as a function on S.

From (5.6) 1, (5.5) 19 (5.3), (4.2) and (4.5), one finds
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12
19 0 S 2 (5.7)

QR(S 1-(--' C2 +S I

it may be noted from Figure 3 that > G0 (O) > 0 at all points on S; this fact, together with the

assumption that 1 1, guarantees that QR is well defined on S. Of course, QR(0, y) = 1; we now

determine the locus of points (S, yi) in the s, yI-plane at which QR= 1 and s * 0; such points

correspond to situations in which the reflectivity is unaltered by the phase transition. This locus

consists of the interior points on the curve TF defined by

11

F R YI 70 0< s!c 2 . (5.8)

Only those points on FR, if any, that lie in the admissible strip S are relevant. If a portion of FR

lies in the interior of S, the strip is divided into two parts: on one, QR < 1, while on the other,

I
QR > 1. Whether FR has points in common with the interior of S is determined by two material

parameters 3 and X, where 13 = PlCl/p 2c2 is the (positive) impedance ratio introduced earlier, and

X is defined by

7M + Ym (5.9)-leo

By (2.7) and our assumption that the Maxwell stress a0 is positive, we have A. > 1. We first

show that FIfails to intersect the interior of S if either of the following conditions holds:

(i) 3 > 1 or (ii) 0 << I and > A(3 2), (5.10)
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where

A(z) = I +-1 1 3zj] , 0<z<l. (5.11)

One can show that A(z) increases monotonically from the value 1 at z = 0, tending to +00 as z

tends to 1.

To establish (5.10), we first note that by (4.11), (4.12) and (5.8), the curve r lies below

the Maxwell curve F0 near both endpoints of the interval 0 < s < c2 , so that F1 cannot have

points in common with the interior of the admissible strip S unless F1 intersects F0 at least twice.

To investigate such intersections, one equates the right sides of (4.11) and (5.8), obtaining a

quadratic equation for s. It is readily shown that (5.10) describes precisely the conditons under

which this equation has no real roots in the interval (0, c2). Thus (5.10) is indeed sufficient to

assure that F1 fails to intersect the interior of S. Conversely, when

R2
1< I and X. < A(p32), (5.12)

the quadratic equation mentioned above has two real roots in (0, c2), corresponding to two points

at which FR and F0 intersect. By a calculation too lengthy to be included here, one can show

that the smaller of these two roots lies in (0, s,) (Figure 3), so that at the left point of intersection,

Fr indeed enters S.FR

We are now in a position to delineate conditions under which the occurrence of the phase

transition always increases the reflectivity, always decreases it or might do either. Figure 4

shows three open regions marked I, II and III in the quadrant 03 > 0, ?, > I in the 13, X- plane.
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Region III corresponds precisely to the inequalities (5.12) and hence to the case in which F
R

enters S. It follows that the reflectivity ratio QR is less than one at some points (13, X) in this

region, greater than one at others; the actual effect obtained depends on the particular kinetic

relation and possibly on the particular value of the strain 7 in the incident wave as well. The

region marked I corresponds to values of 13 and X for which, on the interior of the admissible

strip S of Figure 3, reflectivity at the interface is always less in the material I/material 2 bar than

it is in the material 1/material 3 bar. Thus assuming that nucleation has occurred, the phase

transformation induced in material 2 by the incident wave always acts to reduce reflection if

(13, X) corresponds to a point in region I, regardless of the particular kinetic relation involved . In

region II, precisely the reverse is true: reflectivity is always increased at points in the interior of

S by the phase transformation. For values of (13, X) belonging to the various regions I, II and III,

Figure 5 schematically shows the curve FR in the s, yI-plane.

If the impedance of material 1 is greater than that of the parent phase of material 2, then

13> 1, and it follows from (5.7) that QR(S, yI) increases with s for each fixed 7I. Thus at each

given Y1, the maximum value of the reflectivity ratio QR occurs on the right boundary of S, while

the minimum value occurs on the left boundary. Thus when 13 > 1, fast kinetics promote the

increase of reflectivity, while slow kinetics are best for reducing it.

If the impedance ratio 13 < 1, the behavior of QR as a function of phase boundary speed's

at fixed incident strain TI is more complicated; under certain circumstances, QR may vanish at

some points in S, corresponding through (5.7) to a minimum in QR'
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6. Transmissivity. We state here without proof some results pertaining to the

transmissivity ratio QT' whose behavior is more complicated than that of the reflectivity ratio

QR" Using (5.6)2, (5.5) 29 (5.4), and (4.3) - (4.6), one can show that

Q ) 1 T() + I ( T2 (s), (6.1)
QT(Si 1 T I 8() 2+ j /7 I 2

where

5Tl(s) = [2P + (1 + P)s/c9 1 , (6.2)

. 2

T2(s) (X- l)(1 + p)2s/c + c 2  s T3(s), (6.3)2 / 2  2 ' + s)

T3(s ) c = 12+( 1 2 s XC 2 

c2  c2

and X is defined in (5.9). It is possible to show that, for 3 > 1, one has QT < 1 at all interior

points of the admissible strip S; on the other hand if 3 < 1, one finds that QT takes values greater

than 1 at some points in S, less than I at others.
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